\qquad

C.U.SHAH UNIVERSITY

Summer Examination-2018

Subject Name: Fundamental Electrical Engineering
Subject Code: 4TE01FEE1
Semester: 1
Date: 23/03/2018
Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1 Attempt the following questions:
Branch: B.Tech (All)
Time: 02:30 To 05:30
Marks: 70

1) The unit of an energy is \qquad
A) Joule
B) Watt
C) Joule/seconds
D) None of the above
2) The resistance of metalic conductor is inversly propotional to its \qquad
A) Length
B) Square of the length
C) Area
D) Square of the Area
3) The unit of permittivity is \qquad
A) metre/Farad
B) Farad/metre
C) Farad
D) Farad-metre
4) When four capacitors of $1 \mu \mathrm{~F}$ are connected in parallel, the resultant capacitance will be \qquad
A) $0.5 \mu \mathrm{~F}$
B) $2 \mu \mathrm{~F}$
C) $0.25 \mu \mathrm{~F}$
D) $4 \mu \mathrm{~F}$
5) A capacitor stores $2 \mu C$ charge at $10 V$, its capacitance is \qquad
A) 2 F
B) $0.2 \mu \mathrm{~F}$
C) $5 \mu \mathrm{~F}$
D) $10 \mu \mathrm{~F}$
6) Flux of a magnetic circuit is analogous to \qquad
A) Electric Field Intensity
B) Current density
C) Electric current
D) Resistance
7) The unit of reluctance is \qquad
A) Ampere-Turns/Weber
B) Tesla
C) Weber
D) Ampere-Tesla
8) In case of sinusoidal voltage if $\quad V_{r m s}$ is the rms voltage and V_{m} is the maximum voltage, then $V_{r m s}=$ \qquad
A) V_{m}
B) $\frac{V_{m}}{2}$
C) $\frac{3 V_{m}}{2}$
D) $\frac{V_{m}}{\sqrt{2}}$
9) The relation between angular velocity and frequency of an alternating quantity is given by
A) $\omega=\frac{f}{2 \pi}$
B) $\omega=2 \pi f$
C) $\omega=\frac{2 \pi}{f}$
D) $\omega=\frac{2 f}{\pi}$
10) If the frequency of an alternating current is 200 kHz , its time period will be \qquad
A) $10 \mu \mathrm{~s}$
B) $20 \mu \mathrm{~s}$
C) $15 \mu \mathrm{~s}$
D) $5 \mu \mathrm{~s}$
11) In a series R-L-C circuit, at resonance current is maximum.
A) True
B) False
12) A circuit of with unity power factor behaves as \qquad circuit.
A) A resistive
B) An inductive
C) A capacitive
D) None of the above
13) A transformer having 1000 primary turns is connected to a 250 V AC supply. For a secondary voltage of 400 V , the number of secondary turns should be \qquad
A) 400
B) 250
C) 1600
D) 1250
14) For a step down transformer, transformation ratio K is \qquad
A) >1
B) $=1$
C) $=0$
D) <1

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

(a) Explain the effects of temperature on resistance of pure metals, alloys, insulators and semiconductors.
(b) Derive an expression for ' n ' number of resistances connected in parallel. Give the advantages of parallel connection.

Q-3 Attempt all questions
(a) State Faraday's first law and second law of electromagnetic induction. Derive the equation of induced emf $e=N \frac{d \phi}{d t}$. where $\mathrm{N}=$ Number of turns in a coil, $\phi=$ flux in
the coil.
(b) Derive the mathematical expression for co-efficient of coupling $\quad K=\frac{M}{\sqrt{L_{1} L_{2}}}$ for
magnetically coupled coils. Where $\quad L_{1}=$ self-inductance of coil $1, \quad L_{2}=$ selfinductance of coil 2, and $\mathrm{M}=$ mutual inductance between two coils
(a) Explain the following sinusoidal function terminologies.
i) Amplitude
ii) Instantaneous Value
iii) Time period and Frequency
(b) An alternating emf is represented by $e=200 \sin 314 t$ Volt. Determine
i) Maximum Value
ii) Frequency
iii) Time Period
iv) Angular Frequency

Q-7 Attempt all questions

(a) For a three phase star connected balanced system, derive the relation between
i) Phase Voltage and Line Voltage
ii) Phase Current and Line Current
(b) Derive the relationship between the voltage and current for purely resistive AC circuit. Draw the waveforms and phasor for voltage and current.

Q-8 Attempt all questions

(a) For a series RLC circuit, derive the equation for series resonance $\mathbf{0 7}$ frequency $f=\frac{1}{2 \pi \sqrt{L C}}$.
(b) Derive the emf equation $e=4.44 f N \phi_{m}$ for a single phase transformer where $\mathrm{f}=$ frequency of supply, $\mathrm{N}=$ number of turns either primary or secondary side, $\phi_{m}=$ maximum flux in the core.

